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ABSTRACT: One of the aims of fire investigations is to identify associations among accelerants according to their source. In this study, 50 gas-
oline samples—representing five brands—were analyzed using solid-phase microextraction (SPME) and gas chromatography—-mass spectrometry
(GC-MS). Chemometric procedures, such as principal component analysis (PCA) and discriminant analysis (DA), were applied to a data matrix
obtained by the target compound chromatogram method, to discriminate samples according to their brand. PCA was successful in finding a natural
grouping of samples according to their brand, suggesting that aromatic compounds were more useful than aliphatics for the purpose of this study.
DA, if applied to aromatic compounds, gave both a classification ability and a prediction ability of 100%. The outstanding results obtained by this
work provide the basis of a data matrix that could be used in real cases of arson to link a sample of unevaporated gasoline to its brand or refinery.
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Arson is a widespread crime, instigated by those not only intent
on destroying buildings, their contents, and other property but also
as a means of destroying physical evidence. Petroleum-based
fuels—such as gasoline, kerosene, and diesel—are often utilized as
accelerants as they increase the rate and spread of fire. However,
in cases where an inflammable liquid has been used, enough
unburnt accelerant may remain absorbed in the fire debris to be
able to be detected and then identified.

One of the first problems encountered in forensic investigations
is the physical isolation of very small quantities of accelerant from
a sample of heterogeneous, charred debris taken from the fire
scene. This task is typically performed by using static or dynamic
headspace techniques; solid-phase microextraction (SPME) is a
technique commonly used in forensic sciences, including ignitable
liquid extractions, as presented in literature (1-3). The American
Society of Testing and Materials (ASTM) published guidelines for
the use of SPME as a preparative technique for fire debris analysis
(4), a practice that is especially suitable when a very low concen-
tration of ignitable liquid residues is found in the sample. Unlike
other methods of separation and concentration, this method recov-
ers a minimal amount of the ignitable residues contained in the evi-
dence, leaving behind those that are suitable for subsequent
resampling (4). In this regard, Sandercock published a review of
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fire investigations and ignitable liquid residue analysis, which was
essentially a collection of articles published between late 2001 and
early 2007 (5).

Another critical area in forensic investigations is the difficulty in
detecting traces of petroleum-based fuels in a fire-related sample.
Gas chromatography (GC) using a mass spectrometer (MS) is a
useful technique to detect traces of accelerants. Pyrolysis of syn-
thetic materials (carpets, fabrics, foam padding, floor tiles) during a
fire can produce a complex mixture of volatile compounds that
interfere with low-level detection of common accelerants. More-
over, many frequently observed pyrolysis products are hydrocar-
bons of the type present in petroleum-based accelerants. The target
compound (TC) analysis, proposed by Keto and Wineman (6,7)
and developed further by Lennard (8), helps to overcome these
problems. In their analysis, the total ion chromatogram (TIC) of
each sample was processed by a special data analysis program that
looked for GC peaks at specific retention times. It then checked
the identity of each TC by considering the relative abundance of
two or three characteristic m/z ions. The TCs chosen were known
to be present in the accelerants under investigation and remained
detectable when the accelerant was highly evaporated, diluted, and
contaminated with high levels of coeluting substances. Semi-quanti-
tative data were obtained for the TCs and used to construct a “tar-
get compound chromatogram’ (TCC), that is, a bar graph of base
ion peak area versus retention time for each TC identified. Finally,
the TCCs were visually (6,7) or automatically (with an Excel
macro; [8]) compared with those generated from standard petro-
leum samples. The ASTM also published guidelines for the identi-
fication of residue of ignitable liquids in extracts from fire debris
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samples by performing a GC-MS analysis and developing TCCs
).

The sampling and classification of petroleum-based accelerants,
according to their petroleum distillate class, were realized using
SPME with analysis by GC—flame ionization detection in conjunc-
tion with multivariate data analysis (10). Multivariate pattern recog-
nition techniques were also applied to GC-MS data for the same
purpose (11).

In forensic investigations, it is becoming increasingly important
to identify associations among accelerants according to their source.
Several studies have focused on grouping accelerants using chemo-
metric procedures, such as principal component analysis (PCA) and
discriminant analysis (DA). Sandercock and Du Pasquier realized a
discrimination of unevaporated gasoline samples by applying PCA
and linear discriminant analysis (LDA) to the CO- to C2-naphthalene
profiles obtained from GC-MS analysis (12). A successful associa-
tion of evaporated gasoline samples to unevaporated gasoline sam-
ples using similar methods was also found: 35 samples made up 18
unique groups and a fair separation between the 35 samples at any
given evaporation level was maintained, showing that the variation
between samples was greater than that within samples (13). PCA
was also applied to the CO- to C2-naphthalene profile, showing that
samples tended to cluster together according to their fuel grade and
the period of the year in which they were collected (i.e., in winter
or in summer; [14]). A further comparison between samples col-
lected in New Zealand and Australia showed that most samples
could be grouped based on their country of origin, suggesting that
the CO- to C2-naphthalene profile was dependent on the refinery
where the gasoline was produced (14). PCA applied to GC-MS data
was combined with artificial neural networks to classify unevapo-
rated regular and premium gasoline samples (15). Gasoline samples
were used as model mixtures to improve the classification method
by data pretreatment, such as retention time alignment and analysis
of variance feature selection. The following classification by LDA
used optimal parameters and allowed the replicated analyses of each
sample to cluster (16,17). In another study, Petraco et al. (18) dis-
criminated 25 gasoline samples from casework by multivariate pro-
cedures from data generated by GC-MS, showing that the
variability in the sample population was sufficient enough to distin-
guish all the samples from one another, knowing their groups in
advance. Elsewhere, Hupp et al. (19) applied Pearson product
moment correlation and PCA to group 25 diesel samples collected
at service stations, representing eight different brands. PCA was per-
formed on GC-MS data (after a data pretreatment) using both TICs
and extracted ion chromatograms. Dimensional reduction with PCA
revealed four distinct clusters for the TIC; both statistical procedures
suggested that aromatic components provide the greatest discrimina-
tion among diesel samples (19).

In the study presented here, unevaporated gasoline samples of
several brands were analyzed by SPME-GC-MS; the same method
is in fact used also when samples of fire debris are collected from
the fire scene for analysis. Chromatograms were then examined
using the TCC approach (commonly used to detect the presence of
any accelerants in an arson-related sample) to obtain a data set for
multivariate statistical analysis. Finally, PCA was applied to find a
natural grouping of samples according to their brand, while DA
with canonical discriminant functions was used for numerical
supervised sample classification. The aim of this study was to
obtain a data matrix that could be used in real cases of arson to
link a sample of unevaporated gasoline (that can sometimes be
found at a fire scene, e.g., in an unburned can) to its brand or refin-
ery, with a view to providing further information to forensic
investigations.

Materials and Methods
Samples

Fifty samples of gasoline were collected in Parma (northern
Italy) at service stations supplied from refineries of five well-known
brands, named for the sake of this study “A,” “B,” “C,” “D,” and
“E.” It was possible to obtain some information about the origin of
the crude oil used in two of these refineries: A bought crude oil
from only one country (Libya), while D was supplied with crude
oil coming from several different countries.

It is important to note that the distributor and refinery that supply
gasoline to a specific service station may change depending on sev-
eral factors, including their location. The composition of the gaso-
line will invariably depend not only on the refinery itself but also
on the residual level in the tank when filled. Thus, samples ana-
lyzed for this study were accepted for analysis only if the service
station in question was supplied from the same refinery or distribu-
tor for at least two consecutive times. Further information was
also obtained as to which refineries the distributors received
gasoline from. Finally, 10 samples for each brand, coming from
five refineries located in the north of Italy, were collected over a
9-month period (May 2005-January 2006).

Sample Preparation and Analysis SPME-GC-MS

Twenty microliters of the sample was dissolved in 500 mL of
water and, after shaking, 1 mL of this mixture was put in a head
space vial (10 mL of capacity) and hermetically sealed. The vial
was then heated to 80°C for 15 min.

A fiber coated with a polydimethylsiloxane stationary phase was
exposed for 3 min to the headspace of the sample vial to extract
volatile compounds. The fiber was then introduced directly in the
injection port of a gas chromatograph to thermally desorb the ana-
lytes (4).

GC was performed on a 50 m X 0.2 mm id. X 0.3 um film
HP5-MS capillary column using an Agilent 6890 gas chromato-
graph (Agilent, Milano, Italy) connected to an Agilent 5979 mass
selective detector (Agilent, Palo Alto, CA). The GC conditions
used were as follows: split injection 20.0:1 at 260°C; temperature
set to rise from 70 to 130°C at 2°C/min (held for 0.2 min), then
ramped to 260°C at 10°C/min (held for 26.8 min), giving a total
run time of 70 min. Helium gas carrier was held at a constant flow
rate of 1 mL/min, while the detector was set at a temperature of
280°C.

An electron-impact ionization source was utilized with quadrupole
mass analyzer operated in full-scan mode (m/z 40-400) with a sam-
pling rate of 3 scans/sec; MS-Source: 280°C; MS-Quad: 150°C.

Semi-Quantitative Analysis

Several samples of unevaporated gasoline, kerosene, and diesel
fuel were analyzed select characteristic components of these petro-
leum-based fuels, that is, the TCs. Thirty-four variables, namely 17
aromatic compounds (that include both benzene and naphthalene
derivatives) and 17 aliphatic compounds, which are alkanes (both
normal and branched) and cycloalkanes, were therefore chosen
(listed in Table 1). These compounds used in the TCC approach
are also the variables employed in multivariate statistical analysis.

From the TIC of each sample (one of these is shown in Fig. 1),
a semi-quantitative report of peak areas of TCs was obtained from
a special data analysis program; these values were normalized to
the area of the base peak (benzene, 1,2,3-trimethyl), put to 10,000.
Three independent portions for each sample of gasoline were
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analyzed, and the areas of these 34 peaks were averaged. As TCs
are characteristic components of gasoline, kerosene, and diesel
fuels, all these accelerants (already analyzed with the same GC-MS
method) were able to be processed with the identical data analysis
program.

TABLE 1—Target compounds of petroleum-based fuels.

Target Compound
1 Benzene, 1-ethyl, 2-methyl
2 Benzene, 1,2,3-trimethyl
3 Benzene, 1-methylpropyl
4 Benzene, 1-methyl-2-(1-methylethyl)
5 Benzene, 1,2,4-trimethyl
6 Cyclohexane, butyl
7 Benzene, 1-methyl-3-propyl
8 Benzene, 1-ethyl-3,5-dimethyl
9 Benzene, 1-methyl-2-propyl
10 Benzene, 1-methyl-4-(1-methylethyl)
11 Benzene, 4-ethyl-1,2-dimethyl
12 Undecane
13 Benzene, 1-ethyl-2,3-dimethyl
14 Benzene, 1,2,3,5-tetramethyl
15 Benzene, 1,2,3,4-tetramethyl
16 Cyclohexane, pentyl
17 Benzene, 1,2,4,5-tetramethyl
18 Naphthalene
19 Dodecane
20 Cycloexane, hexyl
21 Tridecane
22 Naphthalene, 2-methyl
23 Naphthalene, 1-methyl
24 Tetradecane
25 Pentadecane
26 Hexadecane
27 Heptadecane
28 Pentadecane, 2,6,10,14-tetramethyl
29 Octadecane
30 Hexadecane, 2,6,10,14-tetramethyl
31 Nonadecane
32 Eicosane
33 Heneicosane
34 Docosane
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FIG. 1—Typical TIC of a gasoline sample.
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Multivariate Statistical Analyses

A first data set relative to 50 samples and 33 variables (averaged
from the analysis of three portions for each sample) was obtained
from the semi-quantitative analysis. The no. 2 variable, correspond-
ing to the base peak, was excluded from the statistical analysis
because its value is equal to 10,000 for all samples, therefore does
not contain any information. A second data set consisted only of
aromatic compounds (which are variables 1, 3, 4, 5, 7, 8, 9, 10, 11,
13, 14, 15, 17, 18, 22, and 23); these were picked to improve the
results obtained from the statistical analysis of the first data set, as
will be discussed in the following section.

The Matrix condition (namely the product of the norm of a
matrix multiplied by the norm of the inverse matrix) was evaluated
for each data set (using MATLAB version 7.2 [20]) to check sys-
tem stability; the correlation matrix was also evaluated for each
data set (using SPSS, version 11.01 [21]) to check the correlation
between variables. Multivariate statistical analysis was then applied
to these two data sets; the chemometric methods were PCA and
DA (outlined in several publications [22-24]). PCA, applied to the
standardized and unstandardized variables, projected the data into a
subspace where data clusters, if present in said subspace, could be
visualized.

DA was applied thereafter to classify the gasoline samples into
five separate groups, according to their brand. The samples were
divided into a training set, to develop a rule for the classification of
the unknown samples, and a test set on which the model could be
assessed. The percentage of the training set and test set members
correctly classified by the model—called classification ability and
prediction ability respectively—were evaluated for the first and the
second data sets. In this study, classification and prediction ability
were estimated using the “leave one out” method, which repeated
the model calculations n times, each time leaving out a different
sample (test set), with the other n — 1 samples forming the training
set. Classification ability was calculated from the training set,
excluding each time the sample that formed the test set, while pre-
diction ability was estimated by predicting the classification of the
test set sample from a model applied to the other n — 1 samples.

llxl.llll -
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Because DA provides reliable results if the ratio between the num-
ber of samples and variables is >3 (25), for the first data set (50
samples and 33 variables) this statistical analysis was applied to the
first three principal components (PCs), while for the second data
set DA was applied to the original variables.

DA was performed calculating canonical discriminant functions;
this method is an extension of LDA, which finds a number of
variables that reflect as much as possible the difference between
the groups. The results are not dependent on scale, so no pretreat-
ment of the data is necessary. PCA and DA were performed using
SPSS (version 11.01 [21].

Results and Discussion
PCA: Ist Data Set, Standardized Variables

Six PCs were extracted, with eigenvalues >1; the first three PCs
explain 71.6% of the total variance; these results are presented in
Table 2.

With regard to the score plot of PC2 versus PC1 and PC3 versus
PCl1, these are shown in Figs 2 and 3, respectively. A separation
of samples in accordance with their brand was obtained for the
“E” and “A” samples: “E” gasoline has the highest positive scores
on PCI (>1) while “A” samples have high positive scores on PC3
(>1) and negative scores on PCl and PC2. “B,” “C,” and “D”
samples are not as well separated as in the cases of “A” and “E,”
but show a trend in their differentiation. PCA was then used to
identify the variables that contribute most to the variance in the
gasoline data set, in other words the variables with the highest

TABLE 2—PCs with eigenvalues >1, extracted applying PCA to the Ist
data set, standardized variables.
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(positive or negative) loadings on the PC1, PC2, and PC3; these
can be seen in Table 3.

The results obtained can be related to the information on the origin
of the crude oil (where available): A samples, tightly clustered in the
scatterplots, were obtained from crude oil coming from only one
country. This oil might have consistent chemical properties, which
would help to explain why A samples appear to be very similar to
each other. On the other hand, D samples, which are fairly well
spread out in the same scatterplots, were obtained from crude oil
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FIG. 3—Score plot of PC3 versus PCI, obtained from the Ist data set,

standardized variables.

TABLE 3—Variables with the highest loadings on the PCI, PC2, and PC3

PC Variance % Cumulative %
1 44.08 44.08
2 21.03 65.11
3 6.44 71.55
4 5.97 77.52
5 4.41 81.93
6 343 85.37
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FIG. 2—Score plot of PC2 versus PCI, obtained from the Ist data set,

standardized variables.

(1st data set, standardized variables).

Variable Compound Loading on PC1
10 Benzene, 1-methyl-4-(1-methylethyl) 0.067
11 Benzene, 4-ethyl-1,2-dimethyl 0.067
9 Benzene, 1-methyl-2-propyl 0.066
13 Benzene, 1-ethyl-2,3-dimethyl 0.066
7 Benzene, 1-methyl-3-propyl 0.065
8 Benzene, 1-ethyl-3,5-dimethyl 0.065
14 Benzene, 1,2,3,5-tetramethyl 0.064
15 Benzene, 1,2,3,4-tetramethyl 0.062
18 Naphthalene 0.062
4 Benzene, 1-methyl-2-(1-methylethyl) 0.062
16 Cyclohexane, pentyl 0.061
3 Benzene, 1-methyilpropyl 0.060
22 Naphthalene, 2-methyl 0.059
23 Naphthalene, 1-methyl 0.059

Loading on PC2
26 Hexadecane 0.133
27 Heptadecane 0.128
28 Pentadecane, 2,6,10,14-tetramethyl 0.120
25 Pentadecane 0.117
31 Nonadecane 0.115
29 Octadecane 0.099
24 Tetradecane 0.098
34 Docosane 0.095
17 Benzene, 1,2,4,5-tetramethyl —-0.051
5 Benzene, 1,2,4-trimethyl -0.074

Loading on PC3
7 Benzene, 1-methyl-3-propyl -0.125
1 Benzene, 1-ethyl, 2-methyl -0.406
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TABLE 4—PCs with eigenvalues >1, extracted applying PCA to the Ist
data set, unstandardized variables.

TABLE 5—Variables with the highest loadings on the PCI, PC2, and PC3

(1st data set, unstandardized variables).

PC Variance % Cumulative % Variable Compound Loading on PC1
1 73.24 73.24 18 Naphthalene 0.286
2 16.92 90.16 22 Naphthalene, 2-methyl 0.195
3 7.58 97.74 11 Benzene, 4-ethyl-1,2-dimethyl 0.149
8 Benzene, 1-ethyl-3,5-dimethyl 0.108
7 Benzene, 1-methyl-3-propyl 0.092
Loading on PC2
3 -
1 Benzene, 1-ethyl, 2-methyl 0.715
N Benzene, 1,2,4-trimethyl -0.170
24 & Loading on PC3
: 23 Naphthalene, 1-methyl 0.129
1 i 3 & 10 Benzene, 1-methyl-4-(1-methylethyl) —-0.119
RO 14 Benzene, 1,2,3,5-tetramethyl -0.148
S A oary 15 Benzene, 1,2,3,4-tetramethyl -0.333
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11 . . e the one obtained through the previous analysis.
P . D The first PC clusters all “E” gasoline samples as they have the
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2 T E analysis), while all “A” samples cluster on PC2, having the highest
A5 A0 500 s o5 200 25 negative scores on this component (<—1). “B,” “C,” and “D” sam-
PC1 ples tend to display a starker differentiation: “D” gasoline shows

FIG. 4—Score plot of PC2 versus PCI, obtained from the Ist data set,
unstandardized variables.
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FIG. 5—Score plot of PC3 versus PCI1, obtained from the Ist data set,
unstandardized variables.

coming from several countries that may well have varying chemical
properties. This would explain why D samples look very different
from each other and why it is therefore more difficult to group them,
compared to the more easily distinguishable A samples.

PCA: Ist Data Set, Unstandardized Variables

Three PCs were extracted, with eigenvalues >1; they account for
97.8% of the variance in the data, as shown in Table 4. The score

lower scores on PC2 and tends to shift toward higher scores on
PC3 (except for two samples) than “B” and “C” samples. A sepa-
ration between “B” and “C” samples is achieved on PC3, where
the samples of the former brand show higher scores than the latter
brand gasoline.

Variables with the highest loadings on PC1, PC2, and PC3
(shown in Table 5) include only aromatic compounds, whereas in
the previous analysis some aliphatic compounds also had the high-
est loadings on the first three PCs (Table 3). This fact can be
explained by considering the fact that in gasoline samples alkanes
and cycloalkanes have very low chromatographic signals, so their
loadings can be compared with aromatic ones only if the variables
are standardized.

PCA: 2nd Data Set, Standardized Variables

The results obtained from the statistical analysis of the first data
set demonstrated that standardized variables were characterized by
a greater loss in discrimination power than unstandardized vari-
ables. As another difference between these two previous analyses
was the respective presence and lack of aliphatic compounds
between variables with the highest loadings on the PCs, it can be
deduced that alkanes and cycloalkanes were not very useful in dis-
criminating automotive gasoline samples in relation to their brand.
Therefore, a further PCA was performed with a second data set
that consisted only of aromatic compounds. Sixteen variables were
used, that is, all the aromatic compounds listed in Table 1. PCA
was first applied to the standardized variables. Three PCs were
extracted, with eigenvalues >1; they account for 95.6% of the vari-
ance in the data, as shown in Table 6.

The score plots of PC2 versus PC1, and PC3 versus PCl1 are
shown in Figs 6 and 7, respectively, while variables with the high-
est loadings on PC1, PC2, and PC3 are shown in Table 7. From
this table, it can be seen that the top contributors to PC1 and PC2
are benzene derivatives, while the top contributors to PC3 are
naphthalene and its derivatives.
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TABLE 6—PCs with eigenvalues >1, extracted applying PCA to the 2nd
data set, standardized variables.

TABLE 7—Variables with the highest loadings on the PCI, PC2, and PC3
(2nd data set, standardized variables).

PC Variance % Cumulative % Variable Compound Loading on PC1
1 73.50 73.50 10 Benzene, 1-methyl-4-(1-methylethyl) 0.084
2 14.82 88.32 11 Benzene, 4-ethyl-1,2-dimethyl 0.084
3 7.29 95.61 9 Benzene, 1-methyl-2-propyl 0.084
13 Benzene, 1-ethyl-2,3-dimethyl 0.083
7 Benzene, 1-methyl-3-propyl 0.082
3 14 Benzene, 1,2,3,5-tetramethyl 0.082
8 Benzene, 1-ethyl-3,5-dimethyl 0.081
4 Benzene, 1-methyl-2-(1-methylethyl) 0.080
4 15 Benzene, 1,2,3,4-tetramethyl 0.080
z by Loading on PC2
Pe _—
“ 5 Benzene, 1,2,4-trimethyl 0.399
11 17 Benzene, 1,2,4,5-tetramethyl 0.228
o . % 3 Benzene, 1-methyilpropyl —-0.121
g ., LEGEND 1 Benzene, 1-ethyl, 2-methyl —0.383
[
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a tom 3 —
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) L e L a s 22 Naphthalene, 2-methyl —-0.464
23 Naphthalene, 1-methyl -0.474
i “D
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S0 -5 00 s 10 s 200 28 are negative in PC2 (Table 7), compared to the other gasoline sam-
PC1 ples. As “A” samples also show negative scores on PC1, they con-

FIG. 6—Score plot of PC2 versus PCI, obtained from the 2nd data set,
standardized variables.
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FIG. 7—Score plot of PC3 versus PCI, obtained from the 2nd data set,
standardized variables.

Gasoline samples are better grouped according to their brand
than results obtained in the two previous analyses. It can be noticed
that “E” gasoline samples, even though they are relatively spread
out, are separated from all other samples as they have the highest
positive scores on PC1 (>1, as in the previous analyses). Therefore,
they contained higher concentrations of the components that are
positive in PC1 (Table 7), compared to the other gasoline samples.

“A” gasoline samples, with the highest positive scores on PC2
(>1), form the best cluster as they are the least spread samples.
They contained higher concentrations of the components that are
positive in PC2 and lower concentrations of the components that

tained small relative quantities of the components that are positive
in PC1 (Table 7). Scores on PC3 tend toward positive values and
are approximately halfway between the negative scores of “D”
samples and positive scores of “C” gasoline. Therefore, naphtha-
lene and its derivative contents in “A” gasoline were halfway
between the higher contents of “D” gasoline and lower contents of
“C” gasoline.

“D” samples are spread and have high negative scores on PC3
(except for two samples); therefore, their trend was toward higher
concentrations of naphthalene and its derivatives (Table 7) com-
pared to the other gasoline samples (except for some “E” samples,
which are spread on this component). “D” samples also show neg-
ative scores on PC1 (except for two samples) and thus contained
small relative quantities of the components that are positive in PC1
(Table 7). Scores on PC2 are approximately halfway between nega-
tive scores of “B” and “C” samples and positive scores of “A”
gasoline.

“C” samples, with the highest positive scores on PC3 (except
for the two “D” samples named before), contained lower concen-
trations of the naphthalene and its derivatives (Table 7) compared
to the other gasoline samples. They also have negative scores on
PC2 and therefore contained small relative quantities of the compo-
nents that are positive in PC2 and high relative quantities of the
components that are negative in PC2 (Table 7).

“B” samples have negative scores on PCI, like “A” and “D”
samples, and thus contained small relative quantities of the compo-
nents that are positive in PC1 (Table 7). “B” samples also have
negative scores on PC2, as “C” samples, while scores on PC3 are
similar to those of “A” gasoline.

PCA: 2nd Data Set, Unstandardized Variables

Three PCs were extracted, with eigenvalues >1; they account for
98.1% of the variance in the data, as shown in Table 8.

From the score plots (Figs 8-10), it can be seen that the group-
ing of samples is very similar to that obtained with standardized
variables. However, there are some improvements: “D” samples
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TABLE 8—PCs with eigenvalues >1, extracted applying PCA to the 2nd
data set, unstandardized variables.
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FIG. 10—Score plot of PC3 versus PC2 versus PCI, obtained from the
2nd data set, unstandardized variables.

TABLE 9—Variables with the highest loadings on the PCI, PC2, and PC3
(2nd data set, unstandardized variables).

PC Variance % Cumulative %
1 73.50 73.50
2 17.00 90.51
3 7.58 98.08
2
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FIG. 8—Score plot of PC2 versus PCI, obtained from the 2nd data set,
unstandardized variables.
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FIG. 9—Score plot of PC3 versus PCI, obtained from the 2nd data set,
unstandardized variables.

are better separated on PC2 between positive scores of “A” gaso-
line and negative scores of “B” and “C” samples. Finally, the sep-
aration between “B” and “C” samples increases on PC3. Variables
with the highest loadings on PC1, PC2, and PC3 (shown in
Table 9) are, however, the same as those obtained with the first
data set and unstandardized variables.

PCA was also applied to other data sets obtained from examin-
ing the correlation matrix, thus eliminating the variables that were
most correlated to each other. The results obtained from these anal-
yses do not show significant improvements compared to those

Variable Compound Loading on PC1
18 Naphthalene 0.286
22 Naphthalene, 2-methyl 0.196
11 Benzene, 4-ethyl-1,2-dimethyl 0.150
8 Benzene, 1-ethyl-3,5-dimethyl 0.108
7 Benzene, 1-methyl-3-propyl 0.093

Loading on PC2
5 Benzene, 1,2,4-trimethyl 0.170
1 Benzene, 1-ethyl, 2-methyl -0.715

Loading on PC3
15 Benzene, 1,2,3,4-tetramethyl 0.335
14 Benzene, 1,2,3,5-tetramethyl 0.149
10 Benzene, 1-methyl-4-(1-methylethyl) 0.119
23 Naphthalene, 1-methyl —-0.130

derived from the second set of data, suggesting that it is more use-
ful to only choose between aromatic compounds and all the vari-
ables for grouping samples, than to choose variables simply in
relation to their correlation.

Discriminant Analysis

The classification and prediction ability obtained performing DA
on the first data set (the first three PCs from unstandardized vari-
ables, which account for 97.8% of the variance in the data, were
preferred to corresponding PCs from standardized variables, which
explain only 71.6% of the variance in the data) and on the second
data set (16 aromatic compounds) are shown in Tables 10 and 11,
respectively. The corresponding plots of the first two canonical dis-
criminant functions are shown in Figs 11 and 12, respectively.

The best classification ability and prediction ability (100% in
both) are obtained by performing DA on the second data set
(Tables 10 and 11). When DA is applied to PCs of the first data
set (from unstandardized variables), there are some misclassified
samples, both by applying cross-validation and the algorithm that
creates canonical discriminant functions (i.e., classification ability).

This result is confirmed in the plots of the first two canonical
discriminant functions (Fig. 12), where the five groups of gasoline
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TABLE 10—Classification ability and prediction ability obtained
performing DA on the first three PCs coming from the Ist data set,
unstandardized variables.

Predicted Group Membership (%)

1 2 3 4 5

Original

1 100 0 0 0 0
2 0 100 0 0 0
3 0 0 80 0 20
4 0 0 0 100 0
5 0 0 0 0 100
Cross-validated

1 100 0 0 0 0
2 0 100 0 0 0
3 0 0 70 10 20
4 0 0 0 90 10
5 0 0 0 20 80

TABLE 11—Classification ability and prediction ability obtained
performing DA on the 2nd data set.

Predicted Group Membership (%)

1 2 3 4 5

Original

1 100 0 0 0 0
2 0 100 0 0 0
3 0 0 100 0 0
4 0 0 0 100 0
5 0 0 0 0 100
Cross-validated

1 100 0 0 0 0
2 0 100 0 0 0
3 0 0 100 0 0
4 0 0 0 100 0
5 0 0 0 0 100

brands are well separated only if discriminant functions are
obtained from the second data set. In Fig. 11, “D,” “B,” and “C”
groups are not as well separated as “E” and “A” clusters, in line
with results obtained by performing the PCA.

Conclusions

Multivariate statistical analysis applied to the peak areas of TCs
obtained by SPME-GC-MS analysis was successful in grouping
50 unevaporated gasoline samples according to their brands. Both
PCA and DA procedures provided the same results.

PCA was first applied to 33 variables that are characteristic com-
ponents of gasoline, kerosene and diesel fuel (first data set). The
results showed a fair differentiation of “E” and “A” brands and
also suggested that aromatic compounds were more useful than ali-
phatics in grouping gasoline brands. Even better results were
obtained by applying the PCA to the second data set, consisting of
only 16 aromatic compounds: “B,” “C,” and “D” samples
improved their grouping according to their brand. For both data
sets, the best results were obtained with unstandardized variables.
For two brands, where information had been obtained about the ori-
gin of the crude oil, it was possible to link the chemical character-
istics of samples to the crude oil used. DA confirmed the results
given by PCA because a classification ability and a prediction abil-
ity of 100% in both were obtained only by performing the analysis
on the second data set.
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FIG. 11—Plot of the first two canonical discriminant functions obtained
by performing DA on the first three PCs coming from the Ist data set,
unstandardized variables.
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FIG. 12—Plot of the first two canonical discriminant functions obtained
by performing DA on the 2nd data set.

This study provides the basis of a data matrix that could be used in
real cases of arson to link a sample of unevaporated gasoline to its
brand or refinery. This might help to answer questions posed by mili-
tary, civil, and legal bodies about the origin of unevaporated gasoline
samples taken from a suspected arsonist. It is possible to update the
data matrix, according to variations that may occur in the composition
of gasoline for each brand, to compare a gasoline sample taken from a
fire scene with gasoline refined, however, no more than a year earlier.

Further developments of this project might provide an analogous
data set for gasoline samples at different levels of evaporation,
which in turn could be used for samples collected from fire debris
where only traces of evaporated gasoline are found. The whole pro-
cedure could be applied to diesel fuel, commonly used as an accel-
erant, by using the same SPME-GC-MS analysis method and the
identical data analysis program employed for gasoline.
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